# transphorm

# 650V Cascode GaN FET PQFN88 Series

### Description

The TPH3206LSGB 650V,  $150m\Omega$  gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge, faster switching speeds, and smaller reverse recovery charge, delivering significant advantages over traditional silicon (Si) devices.

Transphorm is a leading-edge wide band gap supplier with world-class innovation and a portfolio of fully-qualified GaN transistors that enables increased performance and reduced overall system size and cost.

### **Related Literature**

- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing

### **Product Series and Ordering Information**

| Part Number* | Package      | Package<br>Configuration |
|--------------|--------------|--------------------------|
| TPH3206LSGB  | 8 x 8mm PQFN | Source                   |

\* Add "-TR" suffix for tape and reel

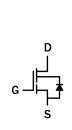
\*\* LDGB package offers larger gate pad

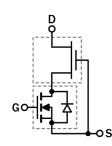
#### Features

- JEDEC qualified GaN technology
- Dynamic R<sub>DS(on)eff</sub> production tested
- · Robust design, defined by
  - Intrinsic lifetime tests
  - Wide gate safety margin
  - Transient over-voltage capability
- Very low QRR
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging

#### **Benefits**

- Enables AC-DC bridgeless totem-pole PFC designs
  - Increased power density
  - Reduced system size and weight
  - Overall lower system cost
- Achieves increased efficiency in both hard- and softswitched circuits
- · Easy to drive with commonly-used gate drivers


#### Applications


- Datacom
- Broad industrial
- PV inverter
- Servo motor

#### **Key Specifications**

| V <sub>DS</sub> (V) min    | 650 |
|----------------------------|-----|
| V <sub>TDS</sub> (V) max   | 800 |
| $R_{DS(on)}(m\Omega)$ max* | 180 |
| Q <sub>rr</sub> (nC) typ   | 52  |
| Qg (nC) typ                | 6.2 |

\* Includes dynamic R(on)





Cascode Schematic Symbol

**Cascode Device Structure** 



TPH3206LSGB

# Absolute Maximum Ratings (Tc=25 °C unless otherwise stated.)

| Symbol                  | Parameter                                 |                                         | Limit Value | Unit |
|-------------------------|-------------------------------------------|-----------------------------------------|-------------|------|
| V <sub>DSS</sub>        | Drain to source voltage $(T_J = -\xi$     | 55°C to 150°C)                          | 650         |      |
| V <sub>(TR)DSS</sub>    | Transient drain to source volta           | age <sup>a</sup>                        | 800         | V    |
| V <sub>GSS</sub>        | Gate to source voltage                    |                                         | ±18         |      |
| PD                      | Maximum power dissipation @               | ₽Tc=25°C                                | 81          | W    |
| 1                       | Continuous drain current @Tc=             | =25°C <sup>b</sup>                      | 16          | А    |
| I <sub>D</sub>          | Continuous drain current @Tc=100°C b      |                                         | 10          | А    |
| I <sub>DM</sub>         | Pulsed drain current (pulse width: 10µs)  |                                         | 60          | А    |
| (di/dt) <sub>RDMC</sub> | Reverse diode di/dt, repetitive °         |                                         | 1200        | A/µs |
| (di/dt) <sub>RDMT</sub> | Reverse diode di/dt, transient            | Reverse diode di/dt, transient d        |             | A/µs |
| Tc                      | Operating temperature                     | Case                                    | -55 to +150 | °C   |
| ΤJ                      | <ul> <li>Operating temperature</li> </ul> | Junction                                | -55 to +150 | °C   |
| Ts                      | Storage temperature                       | Storage temperature                     |             | °C   |
| T <sub>SOLD</sub>       | Soldering peak temperature <sup>e</sup>   | Soldering peak temperature <sup>e</sup> |             | °C   |

Notes:

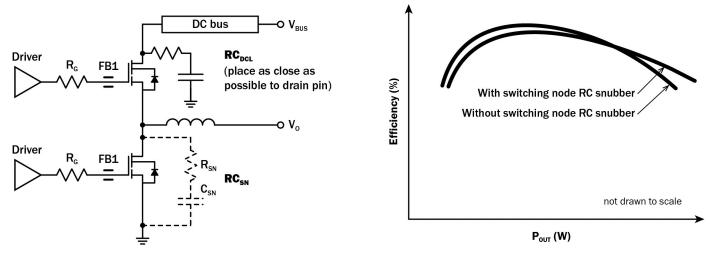
a. In off-state, spike duty cycle D<0.01, spike duration <1µs

b. For increased stability at high current operation, see Circuit Implementation on page 3

c. Continuous switching operation

d.  $\leq$ 300 pulses per second for a total duration  $\leq$ 20 minutes

e. For 10 sec., 1.6mm from the case


### **Thermal Resistance**

| Symbol           | Parameter                        | Typical | Unit |
|------------------|----------------------------------|---------|------|
| R <sub>0JC</sub> | Junction-to-case                 | 1.55    | °C/W |
| R <sub>ØJA</sub> | Junction-to-ambient <sup>a</sup> | 45      | °C/W |

Notes:

a. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm<sup>2</sup> copper area and 70µm thickness)

## **Circuit Implementation**



Simplified Half-bridge Schematic

**Efficiency vs Output Power** 

Recommended gate drive: (0V, 8-10V) with  $R_{G(tot)} = 25\Omega$ , where  $R_{G(tot)} = R_{G} + R_{DRIVER}$ 

| Gate Ferrite Bead (FB1) | Required DC Link RC Snubber (RC <sub>DCL</sub> ) $^{a}$ | Recommended Switching Node<br>RC Snubber (RC <sub>SN</sub> ) <sup>b, c</sup> |
|-------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|
| MMZ1608Q121BTA00        | 10nF + 8Ω                                               | 22pF + 15Ω                                                                   |

Notes:

a. RC<sub>DCL</sub> should be placed as close as possible to the drain pin

b. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of I<sub>RDMC1</sub> or I<sub>RDMC2</sub>; see page 5 for I<sub>RDMC1</sub> and I<sub>RDMC2</sub>)

c.  $I_{RDM}$  values can be increased by increasing  $R_G$  and  $C_{SN}$ 

## Electrical Parameters (T\_=25°C unless otherwise stated)

| Symbol                     | Parameter                                       | Min  | Тур  | Max  | Unit | Test Conditions                                                     |  |
|----------------------------|-------------------------------------------------|------|------|------|------|---------------------------------------------------------------------|--|
| Forward                    | Device Characteristics                          | 1    | 1    | 4    | 1    |                                                                     |  |
| $V_{(BL)DSS}$              | Drain-source voltage                            | 650  | -    | _    | V    | V <sub>GS</sub> =OV                                                 |  |
| $V_{\text{GS}(\text{th})}$ | Gate threshold voltage                          | 1.65 | 2.1  | 2.6  | V    | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =500µA            |  |
|                            |                                                 | -    | 150  | 180  | mΩ   | V <sub>GS</sub> =8V, I <sub>D</sub> =10A                            |  |
| $R_{DS(on)eff}$            | Drain-source on-resistance <sup>a</sup>         | _    | 308  | _    |      | V <sub>GS</sub> =8V, I <sub>D</sub> =10A, T <sub>J</sub> =150°C     |  |
| 1                          |                                                 | -    | 2.5  | 30   |      | V <sub>DS</sub> =650V, V <sub>GS</sub> =0V                          |  |
| IDSS                       | Drain-to-source leakage current                 | _    | 8    | _    | μA   | V <sub>DS</sub> =650V, V <sub>GS</sub> =0V, T <sub>J</sub> =150°C   |  |
| 1                          | Gate-to-source forward leakage current          | _    | _    | 100  |      | V <sub>GS</sub> =18V                                                |  |
| I <sub>GSS</sub>           | Gate-to-source reverse leakage current          | _    | _    | -100 | nA   | V <sub>GS</sub> =-18V                                               |  |
| CISS                       | Input capacitance                               | -    | 720  | _    |      |                                                                     |  |
| C <sub>OSS</sub>           | Output capacitance                              | -    | 46   | _    | pF   | V <sub>GS</sub> =0V, V <sub>DS</sub> =480V, <i>f</i> =1MHz          |  |
| C <sub>RSS</sub>           | Reverse transfer capacitance                    | _    | 5.5  | _    |      |                                                                     |  |
| $C_{O(er)}$                | Output capacitance, energy related <sup>b</sup> | -    | 65   | _    | ъĘ   | V =0V V =0V/to 480V                                                 |  |
| C <sub>O(tr)</sub>         | Output capacitance, time related °              | -    | 106  | _    | pF   | $V_{GS}$ =0V, $V_{DS}$ =0V to 480V                                  |  |
| $Q_{G}$                    | Total gate charge                               | -    | 6.2  | _    |      |                                                                     |  |
| $Q_{GS}$                   | Gate-source charge                              | -    | 2.1  | _    | nC   | $V_{DS}$ =100V, $V_{GS}$ =0V to 4.5V,<br>I_D=10A                    |  |
| $Q_{\text{GD}}$            | Gate-drain charge                               | -    | 2.2  | _    |      |                                                                     |  |
| Qoss                       | Output charge                                   | -    | 44.4 | _    | nC   | $V_{GS}$ =0V, $V_{DS}$ =0V to 400V                                  |  |
| t <sub>D(on)</sub>         | Turn-on delay                                   | -    | 6    | _    |      |                                                                     |  |
| t <sub>R</sub>             | Rise time                                       | -    | 4.5  | _    |      | $V_{DS}$ =480V, $V_{GS}$ =0V to 10V, $I_D$ =10A, $R_G$ =22 $\Omega$ |  |
| t <sub>D(off)</sub>        | Turn-off delay                                  | -    | 9.7  | _    | ns   |                                                                     |  |
| t <sub>F</sub>             | Fall time                                       | -    | 4    | _    | 1    |                                                                     |  |

Notes:

a.

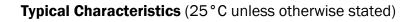
Dynamic on-resistance; see Figures 19 and 20 for test circuit and conditions Equivalent capacitance to give same stored energy as  $V_{\text{DS}}$  rises from 0V to 400V b.

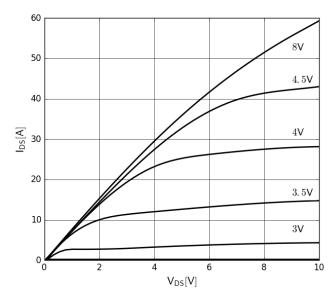
Equivalent capacitance to give same charging time as  $V_{\text{DS}}$  rises from OV to 400V с.

### Electrical Parameters (T\_=25°C unless otherwise stated)

| Symbol                  | Parameter                                                             | Min | Тур | Max  | Unit | Test Conditions                                                 |  |
|-------------------------|-----------------------------------------------------------------------|-----|-----|------|------|-----------------------------------------------------------------|--|
| <b>Reverse Dev</b>      | ice Characteristics                                                   | 1   | I   | 1    | 1    | 1                                                               |  |
| ls                      | Reverse current                                                       | _   | -   | 10   | A    | V <sub>GS</sub> =0V, T <sub>C</sub> =100°C,<br>≤25% duty cycle  |  |
|                         |                                                                       | _   | 2.4 | -    |      | V <sub>GS</sub> =0V, I <sub>S</sub> =10A                        |  |
| V <sub>SD</sub>         | Reverse voltage <sup>a</sup>                                          | _   | 3.7 | -    | v    | V <sub>GS</sub> =0V, I <sub>S</sub> =10A, T <sub>J</sub> =150°C |  |
|                         |                                                                       | _   | 1.7 | -    | -    | V <sub>GS</sub> =0V, I <sub>S</sub> =5A                         |  |
| t <sub>RR</sub>         | Reverse recovery time                                                 | _   | 17  | _    | ns   | $I_{S} = IIA, V_{DD} = 400V,$                                   |  |
| Q <sub>RR</sub>         | Reverse recovery charge                                               | _   | 52  | -    | nC   |                                                                 |  |
| (di/dt) <sub>RDMC</sub> | Reverse diode di/dt, repetitive b                                     | _   | _   | 1200 | A/µs |                                                                 |  |
| IRDMC1                  | Reverse diode switching current, repeti-<br>tive (dc) <sup>c, e</sup> | _   | _   | 11   | A    | Circuit implementation and parameters on page 3                 |  |
| I <sub>RDMC2</sub>      | Reverse diode switching current, repeti-<br>tive (ac) <sup>c, e</sup> | _   | _   | 14   | A    | Circuit implementation and parameters on page 3                 |  |
| (di/dt) <sub>RDMT</sub> | Reverse diode di/dt, transient d                                      | _   | _   | 2400 | A∕µs |                                                                 |  |
| I <sub>RDMT</sub>       | Reverse diode switching current, transient <sup>d,e</sup>             | _   | _   | 18   | A    | Circuit implementation and parameters on page 3                 |  |

Notes:


a. Includes dynamic R<sub>DS(on)</sub> effect


b. Continuous switching operation

c. Definitions: dc = dc-to-dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency

d.  $\leq$ 300 pulses per second for a total duration  $\leq$ 20 minutes

e.  $\ I_{RDM}$  values can be increased by increasing  $R_G$  and  $C_{SN}$  on page 3







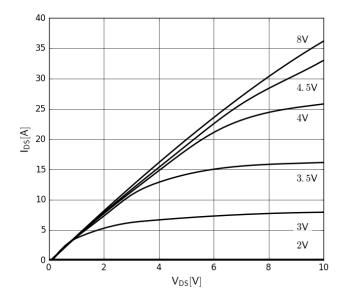
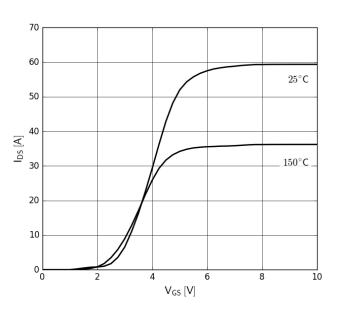
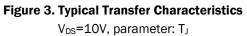
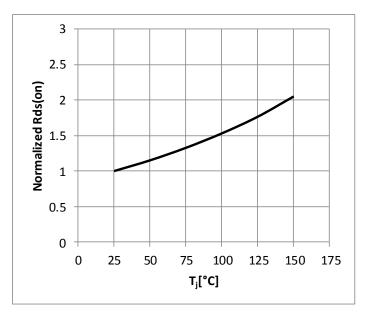
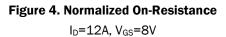
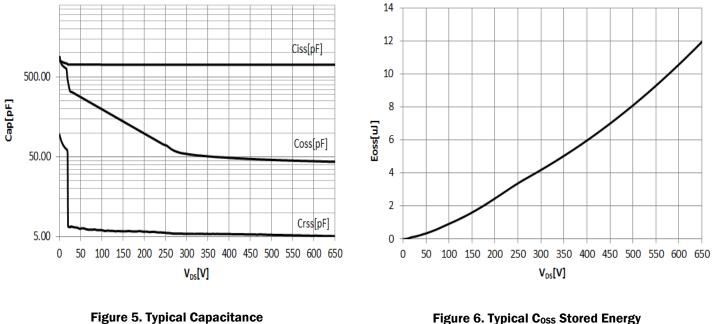
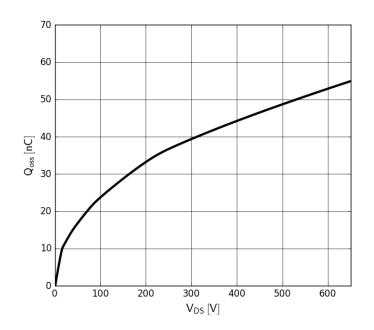






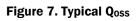

Figure 2. Typical Output Characteristics T<sub>J</sub>=150 °C Parameter: V<sub>GS</sub>

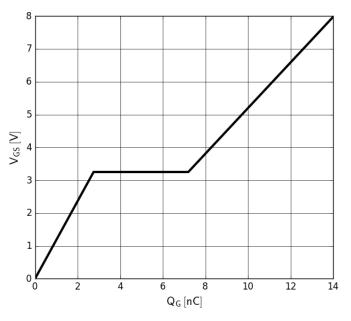




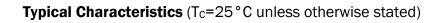


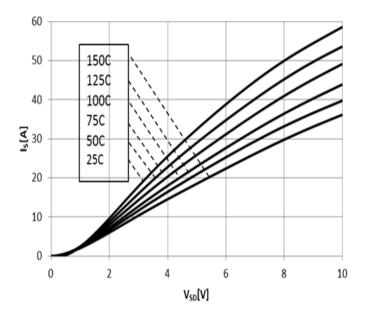



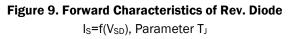


# Typical Characteristics (Tc=25°C unless otherwise stated)

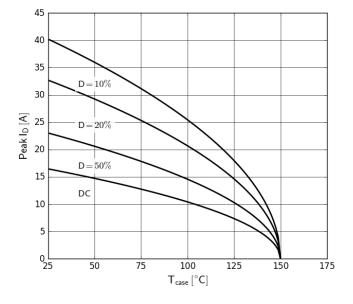



V<sub>GS</sub>=0V, f=1MHz

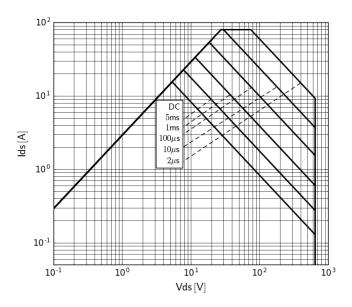

Figure 6. Typical Coss Stored Energy

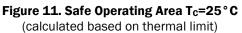


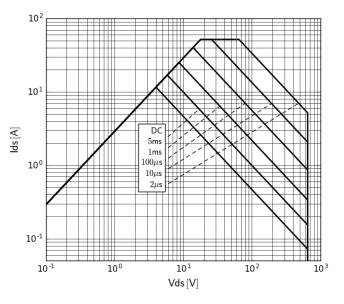



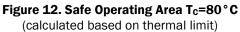




**Figure 8. Typical Gate Charge** I<sub>DS</sub>=10A, V<sub>DS</sub>=400V




**Figure 10. Current Derating** Pulse width = 100µs



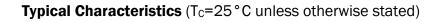






100

80


60

40

20

0 L

 $P_{tot}\left[W
ight]$ 



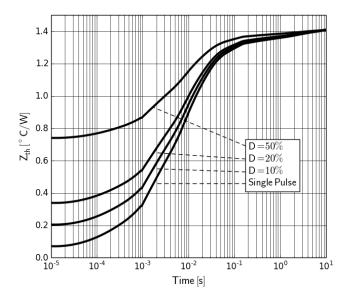
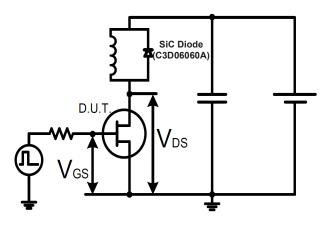





Figure 14. Power Dissipation

50


100

 $\mathsf{T}_{\mathsf{case}}\left[^{\circ}\mathsf{C}\right]$ 

150

200

# **Test Circuits and Waveforms**



**Figure 15. Switching Time Test Circuit** (see circuit implementation on page 3 for methods to ensure clean switching)

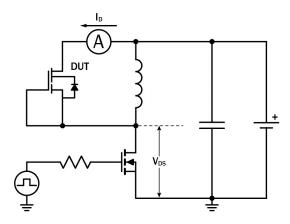



Figure 17. Diode Characteristics Test Circuit

 $\mathbf{R}_{SNS}$ 

DUT

VDS

Ŧ

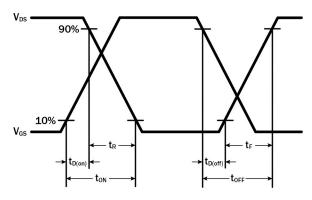



Figure 16. Switching Time Waveform

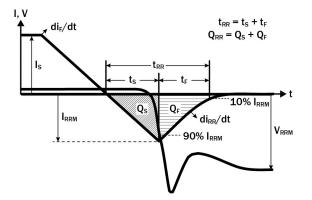
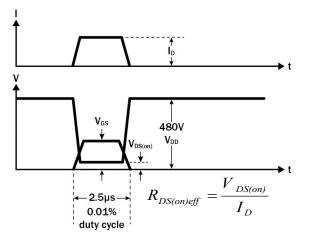
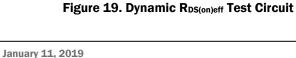
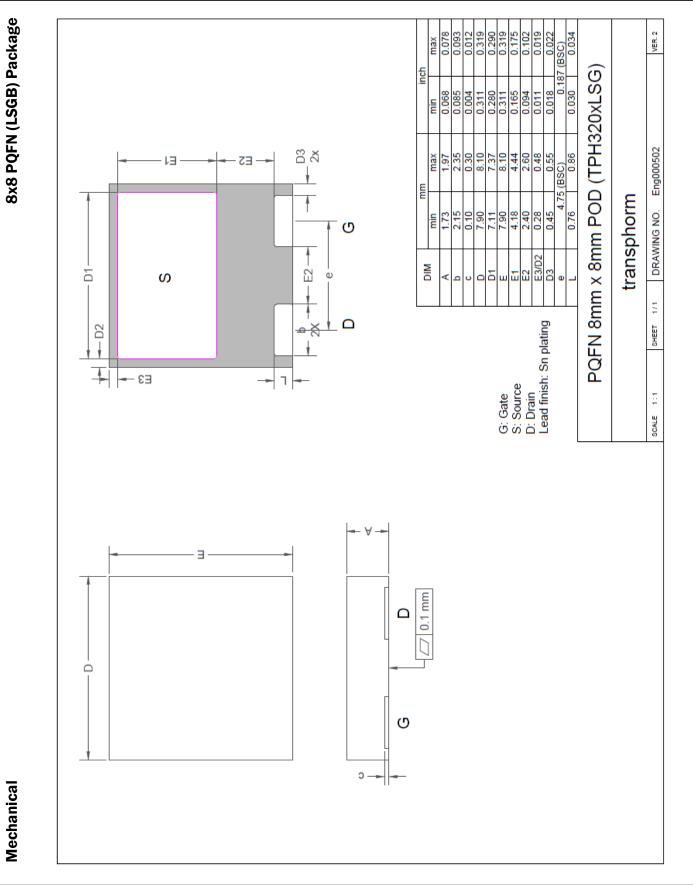





Figure 18. Diode Recovery Waveform








tph3206lsgb.0

Vgs



January 11, 2019 tph3206lsgb.0

transphormusa.com

### **Design Considerations**

The fast switching of GaN devices reduces current-voltage cross-over losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

### When Evaluating Transphorm GaN Devices:

| DO                                                                                                          | DO NOT                                                             |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Minimize circuit inductance by keeping traces short, both in the drive and power loop                       | Twist the pins of TO-220 or TO-247 to accommodate GDS board layout |
| Minimize lead length of TO-220 and TO-247 package when mounting to the PCB                                  | Use long traces in drive circuit, long lead length of the devices  |
| Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points | Use differential mode probe or probe ground clip with long wire    |
| See AN0003: Printed Circuit Board Layout and Probing                                                        |                                                                    |

#### **Application Notes**

- AN0002: Characteristics of Transphorm GaN Power Switches
- AN0003: Printed Circuit Board Layout and Probing
- AN0004: Designing Hard-switched Bridges with GaN
- <u>AN0008</u>: Drain Voltage and Avalanche Ratings for GaN FETs
- AN0009: Recommended External Circuitry for GaN FETs

# **Revision History**

| Version | Date      | Change(s)     |
|---------|-----------|---------------|
| 0       | 1/11/2019 | New datasheet |
|         |           |               |
|         |           |               |
|         |           |               |
|         |           |               |