- Operates From 2.7 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max $t_{\text {pd }}$ of 6.3 ns at 3.3 V
- Typical V OLP (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (Output V_{OH} Undershoot) $>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- $\mathrm{I}_{\text {off }}$ and Power-Up 3-State Support Hot Insertion
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

DB, DW, N, NS, OR PW PACKAGE
(TOP VIEW)

DIR [1	\cup_{20}	V_{CC}
A1 2	19	$\overline{\mathrm{OE}}$
A2 3	18	B1
A3 4	17	B2
A4 5	16	B3
A5 6	15	B4
A6 7	14	B5
A7 8	13	B6
A8 9	12	B7
GND 10		B8

description/ordering information

This octal bus transceiver is designed for $2.7-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74LVCZ245A is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}})$ input can be used to disable the device so the buses are effectively isolated.

Inputs can be driven from either $3.3-\mathrm{V}$ or $5-\mathrm{V}$ devices. This feature allows the use of this device as a translator in a mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ system environment.

When V_{CC} is between 0 and 1.5 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
This device is fully specified for hot-insertion applications using $I_{\text {off }}$ and power-up 3 -state. The $I_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube of 20	SN74LVCZ245AN	SN74LVCZ245AN
	SOIC - DW	Tube of 25	SN74LVCZ245ADW	LVCZ245A
		Reel of 2000	SN74LVCZ245ADWR	
	SOP - NS	Reel of 2000	SN74LVCZ245ANSR	LVCZ245A
	SSOP - DB	Reel of 2000	SN74LVCZ245ADBR	CV245A
	TSSOP - PW	Tube of 70	SN74LVCZ245APW	CV245A
		Reel of 2000	SN74LVCZ245APWR	CV245A
		Reel of 250	SN74LVCZ245APWT	CV245A

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

INPUTS		OPERATION
$\overline{\mathrm{OE}}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high-impedance or power-off state, V_{O} (see Note 1)
-0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, V_{O}
(see Notes 1 and 2) -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Package thermal impedance, θ_{JA} (see Note 3): DB package $70^{\circ} \mathrm{C} / \mathrm{W}$
DW package .. $58^{\circ} \mathrm{C} / \mathrm{W}$
N package . $89^{\circ} \mathrm{C} / \mathrm{W}$
NS package $60^{\circ} \mathrm{C} / \mathrm{W}$
PW package..................................

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The value of V_{CC} is provided in the recommended operating conditions table.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8	V
V_{1}	Input voltage		0	5.5	V
V_{O}	Output voltage	High or low state	0	V_{CC}	V
		3-state	0	5.5	
IOH	High-level output current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-12	mA
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		-24	
${ }^{\text {IOL}}$	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		12	mA
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		24	
$\Delta t / \Delta v$	Input transition rise or fall rate			6	ns/V
$\Delta \mathrm{t} / \Delta \mathrm{V}_{\mathrm{CC}}$	Power-up ramp rate		150		$\mu \mathrm{s} / \mathrm{V}$
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		V CC	MIN	TYP \dagger MAX	UNIT		
VOH		${ }^{\text {I OH }}=-100 \mu \mathrm{~A}$		2.7 V to 3.6 V	$\mathrm{V}_{\mathrm{CC}}-0.2$		V		
		$\mathrm{IOH}=-12 \mathrm{~mA}$		2.7 V	2.2				
		3 V	2.4						
		$\mathrm{IOH}=-24 \mathrm{~mA}$	3 V	2.2					
V_{OL}				$\mathrm{IOL}=100 \mu \mathrm{~A}$		2.7 V to 3.6 V		0.2	v
		$\mathrm{IOL}=12 \mathrm{~mA}$		2.7 V		0.4			
		$\mathrm{IOL}=24 \mathrm{~mA}$		3 V		0.55			
1	Control inputs	$\mathrm{V}_{\mathrm{I}}=0$ to 5.5 V		3.6 V		± 5	$\mu \mathrm{A}$		
loff		V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		0		± 5	$\mu \mathrm{A}$		
$\mathrm{l}^{\text {Oz }}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V		3.6 V		± 5	$\mu \mathrm{A}$		
IozPu		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to 2.5 V ,	$\overline{\mathrm{OE}}=$ don't care	0 to 1.5 V		± 5	$\mu \mathrm{A}$		
IOZPD		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to 2.5 V ,	$\overline{\mathrm{OE}}=$ don't care	1.5 V to 0		± 5	$\mu \mathrm{A}$		
ICC		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	$\mathrm{I} O=0$	3.6 V		100	$\mu \mathrm{A}$		
		$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \leq 5.5 \mathrm{~V}$				100			
$\Delta^{\text {I }} \mathrm{CC}$		One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND		2.7 V to 3.6 V		100	$\mu \mathrm{A}$		
C_{i}	Control inputs	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		3.3 V		4	pF		
C_{io}	A or B ports	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.3 V		6	pF		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameter IOZ includes the input leakage current.
§ This applies in the disabled state only.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{gathered} \hline \mathrm{VCC}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN MAX	MIN	MAX	
tpd	A or B	B or A	7.3	1.5	6.3	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	A or B	9.5	1.5	8.5	ns
${ }^{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	8.5	1.7	7.5	ns

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
			TYP			
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance per transceiver	Outputs enabled		$\mathrm{f}=10 \mathrm{MHz}$	42	pF
		Outputs disabled	3			

PARAMETER MEASUREMENT INFORMATION
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ AND $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

TEST	S1
$\mathrm{t}_{\text {pd }}$	Open
tPLZ $/$ tPZL	$2 \times \mathrm{V}_{\mathrm{CC}}$
tpHZ $^{\text {tPRZH }}$	GND

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. $\mathrm{tPLH}^{\text {and }} \mathrm{tPHL}$ are the same as t_{pd}.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking $(4 / 5)$	Samples
SN74LVCZ245ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CV245A	Samples
SN74LVCZ245ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCZ245A	Samples
SN74LVCZ245ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCZ245A	Samples
SN74LVCZ245APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CV245A	Samples
SN74LVCZ245APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CV245A	Samples
SN74LVCZ245APWT	ACTIVE	TSSOP	PW	20	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CV245A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annul basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74LVCZ245ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LVCZ245ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LVCZ245ANSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LVCZ245APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCZ245ADBR	SSOP	DB	20	2000	367.0	367.0	38.0
SN74LVCZ245ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LVCZ245ANSR	SO	NS	20	2000	367.0	367.0	45.0
SN74LVCZ245APWR	TSSOP	PW	20	2000	367.0	367.0	38.0

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G20)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

$P W$ (R-PDSO-G20)	PLASTIC SMALL OUTLINE
Example Board Layout	Based on a stencil thickness of .127 mm (.005inch).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DETAIL A
TYPICAL

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

