

FEATURES

SCBS718D-JUNE 2000-REVISED DECEMBER 2006

		SN541VT1622	44A W	PACKAGE
•	Members of the Texas Instruments Widebus™ Family	SN74LVT162244A (T	DGG, DG TOP VIEW)	, OR DL PACKAGE
•	Output Ports Have Equivalent 22- Ω Series Resistors, So No External Resistors Are Required	10E [1 1Y1 [2	1 48 2 47] 2 0E] 1A1
•	Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V _{CC})	1Y2U3 GND[4 1V3[6	3 46 4 45] 1A2] GND] 1A3
•	Support Unregulated Battery Operation Down to 2.7 V	1Y4 [] 6 Vcc [] 7	6 43 7 42] 1A4] Vcc
•	Typical V _{OLP} (Output Ground Bounce) <0.8 V at V _{CC} = 3.3 V, T _A = 25°C	2Y1 [8 2Y2 [9	8 41 9 40	2A1 2A2
•	I _{off} and Power-Up 3-State Support Hot Insertion	GND [1 2Y3 [1	10 39 11 38] GND] 2A3
•	Distributed V _{CC} and GND Pins Minimize High-Speed Switching Noise	2Y4 [] 1 3Y1 [] 1	12 37 13 36	2A4 3A1
•	Flow-Through Architecture Optimizes PCB Layout	3Y2 [1 GND [1	14 35 15 34] 3A2] GND
•	Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II	3Y3L1 3Y4[1 V[1	16 33 17 32] 3A3] 3A4] V
•	ESD Protection Exceeds JESD 22	4Y1 [] 1	19 30	4A1
	 200-V Machine Model (A115-A) 	412 U 2 GND [] 2 4V2 [] 2	20 29 21 28	GND
	- 1000-V Charged-Device Model (C101)	4Y3U2 4Y4[2 4OE[1]2	22 27 23 26 24 25	4A3 4A4 3 05
		40E [] 2	24 20	130E

DESCRIPTION/ORDERING INFORMATION

The 'LVT162244A devices are 16-bit buffers and line drivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 22- Ω series resistors to reduce overshoot and undershoot.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using loff and power-up 3-state. The loff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SCBS718D-JUNE 2000-REVISED DECEMBER 2006

TEXAS INSTRUMENTS www.ti.com

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

T _A	PACKA	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	FBGA – GRD	Real of 1000	SN74LVT162244AGRDR	1 72444
	FBGA – ZRD (Pb-free)	Reel of 1000	SN74LVT162244AZRDR	LZ244A
		Tube of 25	SN74LVT162244ADL	
			SN74LVT162244ADLG4	
	550P - DL	Deal of 1000	SN74LVT162244ADLR	LV1162244A
40°C to 95°C		Reel of 1000	74LVT162244ADLRG4	
-40°C 10 85°C	TESOD DCC	Deal of 2000	SN74LVT162244ADGGR	1.1/T1622444
	1350P - DGG	Reel of 2000	74LVT162244ADGGRE4	LV1162244A
		Deal of 2000	SN74LVT162244ADGVR	1 70444
	TVSOP - DGV	Reel of 2000	74LVT162244ADGVRE4	LZZ44A
	VFBGA – GQL	Deal of 1000	SN74LVT162244AGQLR	1 70444
	VFBGA – ZQL	Reel of 1000	SN74LVT162244AZQLR	LZZ44A
–55°C to 125°C	CFP – WD	Tube	SNJ544LVT162244AWD ⁽²⁾	SNJ54LVT162244AWD

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

(2) Product preview

GQL OR ZQL PACKAGE (TOP VIEW)										
	_	1	2	3	4	5	6	_		
A	$\left[\right]$	()	()	0	()	0	()			
C B		0	0	Ö	0	0	0			
D E		\bigcirc	()	()	()	0	()			
F G		()	()	()	()	() ()	()			
H		$\left(\right)$	()	$\binom{1}{0}$	()	()	()			
ĸ		Ö	0	0	()	0	Ö	J		

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

	1	2	3	4	5	6
Α	1 <mark>0E</mark>	NC	NC	NC	NC	2 <mark>0E</mark>
В	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
Е	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
н	4Y1	4Y2	V _{CC}	V _{CC}	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
к	4 0E	NC	NC	NC	NC	3 0E

(1) NC – No internal connection

SCBS718D-JUNE 2000-REVISED DECEMBER 2006

GRD OR ZRD PACKAGE (TOP VIEW)

		1	2	3	4	5	6	
A	$\left(\right)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
в		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

(54	-Ball G	RD/ZRD) Packa	ge)	
1	2	3	4	5	6
1Y1	NC	1 <mark>0E</mark>	2 <mark>0E</mark>	NC	1A1
1Y3	1Y2	NC	NC	1A2	1A3
2V1	174	Vaa	Vaa	144	241

TERMINAL ASSIGNMENTS⁽¹⁾

С	2Y1	1Y4	V _{CC}	V _{CC}	1A4	2A1
D	2Y3	2Y2	GND	GND	2A2	2A3
Е	3Y1	2Y4	GND	GND	2A4	3A1
F	3Y3	3Y2	GND	GND	3A2	3A3
G	4Y1	3Y4	V _{CC}	V _{CC}	3A4	4A1
н	4Y3	4Y2	NC	NC	4A2	4A3
J	4Y4	NC	4 0E	3 0E	NC	4A4

(1) NC – No internal connection

FUNCTION TABLE (each 4-bit buffer/driver)

A B

INPU	JTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
н	Х	Z

SCBS718D-JUNE 2000-REVISED DECEMBER 2006

Pin numbers shown are for the DGG, DGV, DL, and WD packages.

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the high-impe	edance or power-off state ⁽²⁾	-0.5	7	V
Vo	Voltage range applied to any output in the high state) (2)	-0.5	V _{CC} + 0.5	V
I _O	Current into any output in the low state			30	mA
I _O	Current into any output in the high state ⁽³⁾		30	mA	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGG package		70	
		DGV package		58	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package		63	°C/W
$\begin{array}{c c} V_{CC} & Si \\ \hline V_{I} & In \\ \hline V_{O} & Va \\ \hline I_{O} & Ci \\ \hline I_{O} & Ci \\ \hline I_{IK} & In \\ \hline I_{OK} & O \\ \hline \\ \theta_{JA} & Pa \\ \hline \\ \hline T_{stg} & St \\ \end{array}$		GQL/ZQL package		42	
		GRD/ZRD package		36	
T _{stg}	Storage temperature range	-65	150	°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (2)

(3) This current flows only when the output is in the high state and $V_0 > V_{CC}$. (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVT16	2244A ⁽²⁾	SN74LVT1	62244A	
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-12		-12	mA
I _{OL}	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

(2) Product preview

SCBS718D-JUNE 2000-REVISED DECEMBER 2006

Electrical Characteristics

V_{IK}

VOL

I_L

 I_{off}

I_{OZH}

I_{OZL}

IOZPU

IOZPD

I_{CC}

 $\Delta I_{CC}{}^{(4)}$

Ci

 C_{o}

V_{OH}

over recommended operating free-air temperature range (unless otherwise noted)

	TEOT O	311341	_VII02244	HA ()	3N/4LV1102244A			LINUT	
PARAMETER	TEST	JUNDITIONS	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNIT
	V _{CC} = 2.7 V,	l _l = -18 mA			-1.2			-1.2	V
	V _{CC} = 3 V,	I _{OH} = -12 mA	2						V
	V _{CC} = 3 V,	l _{OL} = 12 mA			0.8			0.8	V
	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10	
Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND			±1			±1	۸
Data innuta	V 26V	$V_{I} = V_{CC}$			1	1			μA
Data inputs	$v_{\rm CC} = 3.0$ v	$V_1 = 0$			-5			-5	
	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V						±100	μΑ
	V _{CC} = 3.6 V,	$V_0 = 3 V$			5			5	μΑ
	$V_{CC} = 3.6 V,$	$V_{O} = 0.5 V$			-5			-5	μA
J	$\frac{V_{CC}}{OE} = 0$ to 1.5 V, V_{C}	_D = 0.5 V to 3 V,			±100 ⁽³⁾			±100	μA
)	$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V _C \overline{OE} = don't care	$_{\rm O}$ = 0.5 V to 3 V,			±100 ⁽³⁾			±100	μA
	$V_{cc} = 3.6 V_{c}$	Outputs high			0.19			0.19	
	$I_0 = 0,$	Outputs low			5			5	mA
	$V_{I} = V_{CC} \text{ or } GND$	Outputs disabled	0.19				0.19	l	
(4)	V _{CC} = 3 V to 3.6 V, V, Other inputs at V	One input at V _{CC} – 0.6 _{CC} or GND			0.2			0.2	mA

SN54LVT162244A⁽¹⁾

4

9

Texas

4

9

pF

pF

SN74LVT162244A

STRUMENTS www.ti.com

Product preview (1)

 $V_{I} = 3 V \text{ or } 0$

 $V_0 = 3 V \text{ or } 0$

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
(3) On products compliant to MIL-PRF-38535, this parameter is not production tested.
(4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54LVT162244A ⁽¹⁾				SN74LVT162244A					
PARAMETER	R FROM (INPUT)	FROM TO INPUT) (OUTPUT)	V_{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		V	V _{CC} = 2.7 V		UNIT
			MIN	МАХ	MIN	МАХ	MIN	TYP ⁽²)	МАХ	MIN	МАХ	
t _{PLH}	A	V	1.1	4.6		5.1	1.4	3.4	4		4.8	20
t _{PHL}		A	1.1	3.9		4.5	1.2	2.9	3.6		4.1	115
t _{PZH}		v	1.1	5.4		6.7	1.2	3.9	5.1		6.5	20
t _{PZL}	ÖL	UE Y	1.3	4.9		6.1	1.4	3.8	4.5		5.8	115
t _{PHZ}		V	1.6	5.9		6.5	2.2	4.4	5		5.4	20
t _{PLZ}	OE	Y	1	5.9		5.8	2	4.2	5		5.4	ns
t _{sk(LH)}									0.5			20
t _{sk(HL)}									0.5			115

(1) Product preview

(2) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

0 6 V **S1** O Open **500** Ω TEST **S**1 From Output Under Test O GND t_{PLH}/t_{PHL} Open t_{PLZ}/t_{PZL} 6 V $C_L = 50 \text{ pF}$ **500** Ω t_{PHZ}/t_{PZH} GND (see Note A) 2.7 V LOAD CIRCUIT **Timing Input** 1.5 V 0 V tw t_{su} t_h 2.7 V 2.7 V 1.5 V 1.5 V Input 1.5 V 1.5 V **Data Input** • 0 V 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** PULSE DURATION SETUP AND HOLD TIMES 2.7 V 2.7 V Output Input 1.5 V 1.5 V 1.5 V 1.5 V Control 0 V 0 V - t_{PLZ} t_{PZL}-t_{PHL} t_{PLH} Output VOH 3 V Waveform 1 Output 1.5 V 1.5 V 1.5 V S1 at 6 V V_{OL} + 0.3 V (see Note B) VoL VoL t_{PHL} t_{PLH} t_{PZH} t_{PHZ} Output VOH V_{OH} Waveform 2 V_{OH} – 0.3 V Output 1.5 V 1.5 V 1.5 V S1 at GND ε0 V VoL (see Note B) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES** ENABLE AND DISABLE TIMES INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
74LVT162244ADGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT162244A	Samples
SN74LVT162244ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT162244A	Samples
SN74LVT162244ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LZ244A	Samples
SN74LVT162244ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT162244A	Samples
SN74LVT162244ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT162244A	Samples
SN74LVT162244AZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LZ244A	Samples
SN74LVT162244AZRDR	ACTIVE	BGA MICROSTAR JUNIOR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LZ244A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com

17-Mar-2017

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVT162244ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVT162244ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74LVT162244AZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74LVT162244AZRDR	BGA MI CROSTA R JUNI OR	ZRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Feb-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVT162244ADGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74LVT162244ADLR	SSOP	DL	48	1000	367.0	367.0	55.0
SN74LVT162244AZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	350.0	350.0	43.0
SN74LVT162244AZRDR	BGA MICROSTAR JUNIOR	ZRD	54	1000	350.0	350.0	43.0

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

ZQL0056A

PACKAGE OUTLINE

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.

ZQL0056A

EXAMPLE BOARD LAYOUT

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

ZQL0056A

EXAMPLE STENCIL DESIGN

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

ZRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Falls within JEDEC MO-205 variation DD.

D. This package is lead-free. Refer to the 54 GRD package (drawing 4204759) for tin-lead (SnPb).

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated