

SPECIFICATION SHEET

SPECIFICATION SHEET NO.	N0909- UT106M035HDHTA
DATE	Sept. 09, 2021
REVISION	A0
DESCRIPITION	SMD Aluminum Electrolytic Capacitors, Standard type
	UT series, 2 pads Capacitance: 10µF, Tolerance ±20%, Voltage 35V,
	Case size: Ø5.00*L5.40mm, Ripple Current 22 mA Max., 2000 Hours
	Operating Temp. Range -55°C ~+105°C
	RoHS/RoHS III Compliant & Halogen Free
	Package in Tape/Reel, 1000pcs/Reel
CUSTOMER	
CUSTOMER PART NUMBER	
CROSS REF. PART NUMBER	
ORIGINAL PART NUMBER	Aillen CAE106M1VHUTDE4TR
PART CODE	UT106M035HDHTA

VENDOR APPROVE			
Issued/Checked/Approved	So mpope Mandy Xu To N # 2 U	Composed Composed Chang Control Contro	Jack Towpoge
DATE: Sept. 09, 2021			
CUSTOMER APPROVE			
DATE:			

Τ

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

MAIN FEATURE

- SMD Aluminum Electrolytic Capacitors
- Designed for SMD on PCB
- Applicable to automatic mounting machine
- RoHS Complaint and Halogen Free

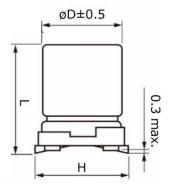
APPLICATION

• High-density Patch Assembly General Electronic Circuit Etc.

PART CODE GUIDE

UT	106	м	035	н	D	н	т	Α
1	2	3	4	5	6	7	8	9

- 1) UT: SMD Aluminum Electrolytic Capacitors, UT series, 2 pads
- 2) 106: Rated Capacitance Code, 106: 10µF
- 3) M: Capacitance tolerance code, M: ±20%; K: ±10%; V: -10% ~ ±20%,
- 4) 035: Rated Voltage Code, 6R3: 6.3V; ; 010: 10V; 016:16V; 025: 25V; 035: 35V; 050: 50V; 063: 63V; 100: 100V
- 5) H: Environmental Requirements code, R: RoHS Complaint; H: RoHS III Complaint & Halogen Free
- 6) D: Aluminum Case size code, B: Ø3.0mm; C: Ø4.0mm; D: Ø5.0mm; E: Ø6.3mm; F: Ø8.0mm; G: Ø10.0mm
- 7) H: Aluminum case Heigh code, H: L5.4mm; I: L6.5mm; J: L7.7mm; K: L10.2mm; L: L11.5mm; M: L12.5mm; N: L13.5mm
- 8) T: Package in Tape/Reel, 1000pcs/Reel
- 9) A: Internal control or Customer's Special Code (A~Z or 1~9)



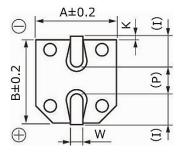
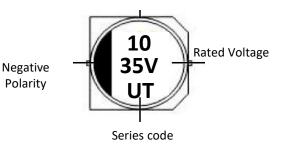
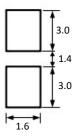

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Image for reference

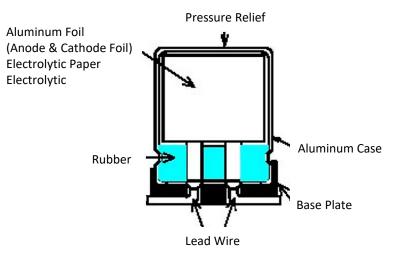
UT Series Case Ø5.00*L5.40mm




Symbol	Dimension (mm)
Α	5.3
В	5.3
D	Ø4.0
н	6.5 Max
I	2.2 Ref.
L	5.4+/-0.3
К	0.50 Max.
р	1.5 Ref.
w	0.65+/-0.1

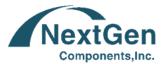
Marking

Capacitance


Recommended Land (mm)

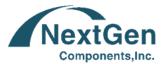
SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

CONSTRUCTION

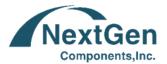


CHARACTERISTICS

Standard atmospheric conditions


The standard range of atmospheric conditions for making measurements/test as follows: Ambient temperature: 15° C to 35° C; Relative humidity: 45% to 85%; Air Pressure: 86kPa to 106kPa If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature: 20° C \pm 2° C; Relative humidity: 60% to 70%; Air Pressure: 86kPa to 106kPa As to the detailed information, please refer to following Table

Item	Characteristics
Operating Temperature Range	-55~+105°C
Rated Voltage Range	35 V
Capacitance Range	10 µF
Capacitance Tolerance at 20°C,120Hz	±20%
Leakage Current at 20°C	I ≤ 0.01 CV (μA) or 3 (μA), Whichever is greater after 2 minutes I: Leakage Current(μA) C: Rated Capacitance(μF) V: Working Voltage(V)


SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Item	Characteristics									
Dissipation Factor at 20°C,120Hz	WV 6.3 10 16 25 35 50 63 100									
	Tanδ	0.30	0.24	0.20	0.18				05).14	0.14
Low Temperature Stability	Impedar	nce ratio ((120 Hz))						
	Rated	Voltage (N	/)		6.3	10	16	25	35	~100
		/Z+20°C	<	Ф8	4	3	2	2		2
	(120)	Η Ζ)	≥0	Ф8	5	4	3	2		2
		/Z+20°C	<	Ф8	8	8	4	4		3
	(120Hz)		≥0	Ф8	10	8	6	4		3
					the capacitors Shall meet the following requirements. Within \pm 30% of initial value					
	Dissipation Factor			Not more than 300% of the specified value						
	Leakage Current			Not more than the specified value						
Shelf Life	After storage for 1000hrs at +105°C, then resumed 16 hours, the capacitors Sha meet the following requirements						ors Shall			
	Capacita	nce Char	ige	Within \pm 30% of initial value						
	Dissipation Factor Not more than 300% of the specified value									
	21001040			Not more than 300% of the specified value Not more than 300% of the specified value						

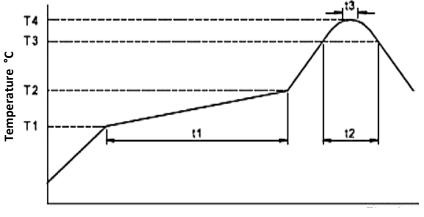
SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Item			Cha	racterist	tics			
Resistance to Soldering Heat	seconds. After rem they meet the follo	seconds. After removing from they meet the following requ Capacitance Change Dissipation Factor						
Adhesion test	Reasonable pulling Push pull Scale			tape	pprox. 10 ⁰	: 300mm, arrier tape		
Rated Voltage (WV) Surge Voltage (SV)	WV (VDC)6.3SV (VDC)8	10 13	16 20	25 32	35 44	50 63	63 79	100 125
Damp heat test	Humidity test: According to IEC60 500±8 hours in an change shall meet Leakage curre Capacitance C tanδ Appearance	n atmospl the follov ent	nere of 90 wing requ Not mo Within Not mo	D~95%R irement ore than $\pm 20\%$ ore than	H .at 40 : the spec of initial v 120% of	±2°C, the	e charact le. ified valu	eristic

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

CASE SIZE & MAX RIPPLE CURRENT

Rated Voltage (V)	Capacitance (+/-20%) μF	Case Size Ø*L mm	Tanδ @+105°C, 100KHz	Ripple Current mA r.m.s . @+105°C, 100KHz	Impedance Ω @20°C,100KHz
35	10	5.00*5.40	0.16	22	-


FREQUENCY COEFFICIENT OF ALLOWABLE RIPPLE CURRENT

Frequency	50Hz	120Hz	300Hz	1KHz	≥10kHz
Coefficient	0.70	1.00	1.17	1.36	1.50

WELDING METHODS AND APPLICABILITY

Welding Method	Reflow Soldering	Soldering Iron	Wave Soldering
The feasibility of	ОК	ОК	N/A


Conditions for the use of lead-free reflow soldering.:

Time Second

METHODS THE FOLLOWING:

Reflow soldering: please follow the temperature condition during welding. If high temperature is used, please measure and inform the capacitor temperature and reflow soldering condition. The product size is larger and its rising temperature is slower. It is not necessary to adjust the temperature of the reflow solder in accordance with the size of the product. For example, the products of 4 and 10 will be installed in the PCB over tin furnace.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Precautions for soldering tin:

Related factors of reflow soldering temperature:

Product size: The product size is larger and its temperature rises slowly.

Product installation position: The temperature of PCB center is lower than that of PCB.

Reflow soldering

If possible, avoid reflow soldering twice.

If repeated reflux is unavoidable, measure and inform the first and second reflux temperature,

and the time of reflow soldering.

Please do not 3 times of reflow soldering

Please follow the following conditions when soldering tin soldering:

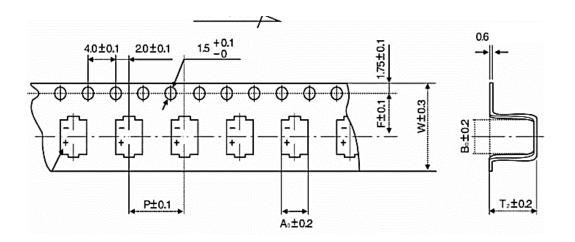
Soldering iron maximum temperature: $350\pm5^{\circ}C$

Welding time: 3+1/-0 sec

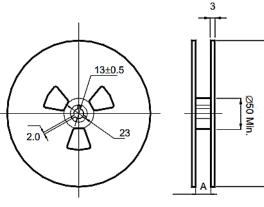
TEST METHOD AND PEAK TEMPERATURE PERMISSIBLE RANGE

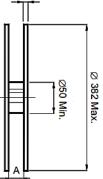
Part Code		UT106M035HDHTA
Rated Voltage (V)		35 V
Case Size		Ø5.00*L5.40mm
Preheating	Temperature Range (T1~T2)	150~180 °C
	Time (t1) Max.	120 Second
The Duration Of The	Temperature Range (T3)	230 °C
	Time (t2) Max.	30 Second
The Highest Temperature	Temperature Range (T4)	250 °C
	Time (t3) Max.	5 Second
Return The Number		1 times

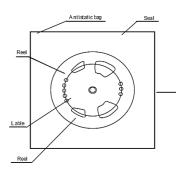
Note

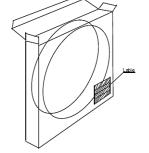

1) Please contact us if the condition of use are higher than the

2) When performing 2nd reflow Soldering, please make sure the temperature of capacitor have cooled to : 5~35°C

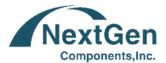



SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES


TAPE (Unit: mm), 1000pcs/Reel



REEL (Unit: mm)



Case size: Ø5.00*L5.40mm			
Symbol	Dimension (mm)		
W	12.0		
Р	12.0		
F	5.5		
A 0	6.0		
В О	6.0		
T 2	5.8		
А	14.0+/-0.3		

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

ATTENTION FOR OP-CAP SOLDERING

Reflow soldering will reduce the rated electrostatic capacity of the product, and it should be confirmed whether reflow soldering condition meets the specification of recommended reflow soldering.

Although the actual reflow condition change is still based on the reflow soldering method, please note that the highest temperature and the electrode terminal at the bottom of the aluminum shell must not exceed the maximum temperature.

Please note: OP - CAP products during the process of reflow heating temperature should increase to more than 200 °C. If the reflow condition temperature or duration is greater than the above table, the OP-CAP product will be damaged. The electrostatic capacity of the product is reduced by about 50%, the leakage current is large (up to mA), and the outside of the capacitor is damaged.

APPLICATION GUIDELINE

Circuit Design:

1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.

2) Operating temperature and applied ripple shall be within specification.

3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.

4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors cannot be used for AC voltage application.

5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge/ discharge. In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.


6) Do not apply excess voltage.

(1) Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

(2) In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor.

7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:

(1) (a) Capacitors will be exposed to water (including condensation), brine or oil. (b) Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc. (c) Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

(2) Severe vibration and physical shock conditions that exceed specification.

Vibration test condition: 10-55-10Hz

vibration frequency range : 10 $\sim\!55\!\sim\!10\text{Hz}$

sweep rate : $10 \sim 55 \sim 10$ Hz/minute

sweep method : logarithmic

amplitude or acceleration : 1.5mm (max. acceleration is 10G)

direction of vibration : X, Y, Z direction

testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales office.

8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal.

9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.

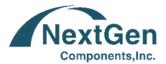
10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.

11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.

12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

Mounting

1) Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.


2) Leakage current of the capacitors that have been stored for more than 2 years may increase. When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.

3) Please confirm specifications and polarity before installing capacitors on the PC board.

4) Do not drop capacitors on the floor, nor use a capacitor that was dropped.

5) Do not deform the capacitor during installation.

6) Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Reflow soldering

1) Please follow "Reflow Soldering Conditions" when use the part.

2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared will vary due to difference in the color and size of the capacitor.

(1) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.

(2) Do not carry the PC board by grasping the soldered capacitor.

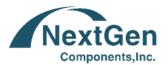
(3) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.

(4) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.

(5) Cleaning:

(a) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales office.

(b) Recommended cleaning method, Applicable : Any type, any ratings


Cleaning conditions: Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.; Avoid using ozone destructive substances as cleaning agents for protecting global environment.

In the PCB after mounted

1) Do not directly touch terminal by hand.

2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

3) Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

SMD ALUMINUM ELECTROLYTIC CAPACITORS UT SERIES

Maintenance and Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc.

Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in catalogue or alternate product specification.

In an Emergency

- 1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.
- 2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.
- 3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

Storage

1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

Temperature: 5°C \sim 35°C Humidity : lower than 75% Place : Indoor

2) Avoid ambient conditions where capacitors are covered with water, brine or oil.

Disposal

Please take either of the following methods in disposing capacitors.

- 1) Incinerate them after crushing capacitors or making a hole on the capacitor body.
- 2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.

DISCLAIMER

NextGen Component, Inc. reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information 13