

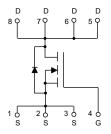
Features

- · Split Gate Trench MOSFET Technology
- · Low Thermal Resistance
- Halogen Free. "Green" Device (Note 1)
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)

Maximum Ratings

Operating Junction Temperature Range : -55°C to +150°C

• Storage Temperature Range: -55°C to +150°C


Thermal Resistance: 3.5°C/W Junction to Case (2)

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Volltage	V _{GS}	±20	V
Continuous Drain Current	I _D	90	Α
Pulsed Drain Current (3)	I _{DM}	340	Α
Total Power Dissipation	P _D	35	W
Single Pulsed Avalanche Energy ⁽⁴⁾	E _{AS}	450	mJ

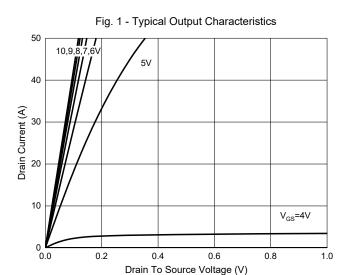

Note:

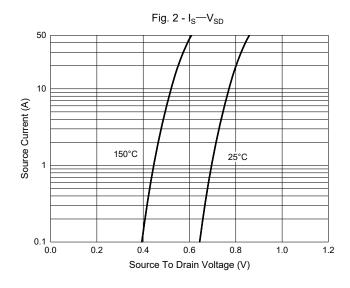
- 1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 2. Surface Mounted on 1 in 2 pad area, t \leq 10 sec.
- 3. Pulse Test: Pulse Width≤10µs,Duty Cycle ≤1%.
- 4. T_J =25°C, L=1mH, V_{DD} =50V.

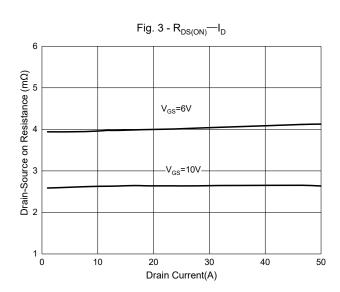
Internal Structure

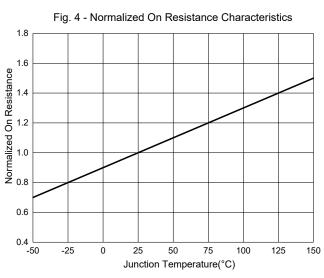
N-CHANNEL MOSFET

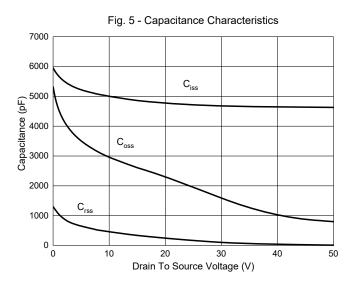
	DIMENSIONS				
DIM	INCHES		MM		NOTE
DIIVI	MIN	MAX	MIN	MAX	NOIL
Α	0.031	0.047	0.80	1.20	
В	0.010		0.254		TYP.
С	0.193	0.222	4.90	5.64	
D	0.232	0.250	5.90	6.35	
Е	0.148	0.167	3.75	4.25	
F	0.126	0.154	3.20	3.92	
G	0.189	0.213	4.80	5.40	
Н	0.222	0.239	5.65	6.06	
K	0.045	0.059	1.15	1.50	
J	0.012	0.020	0.30	0.50	
L	0.046	0.054	1.17	1.37	
M	0.012	0.028	0.30	0.71	
N	0.016	0.028	0.40	0.71	

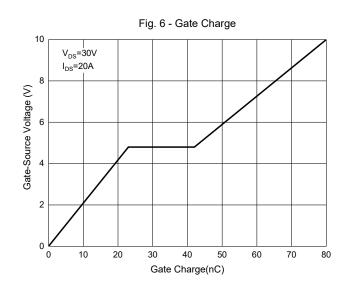


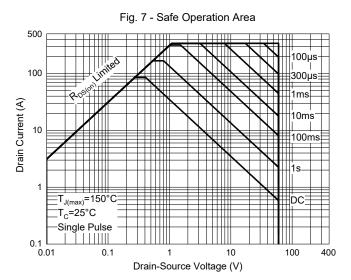

Electrical Characteristics @ 25°C (Unless Otherwise Specified)


Drain-Source Breakdown Voltage $V_{(BR)DSS}$ $V_{GS}=0V$, $I_D=250\mu A$ 60 V Gate-Source Leakage Current I_{GSS} $V_{DS}=0V$, $V_{GS}=\pm 20V$ ±100 nA Zero Gate Voltage Drain Current I_{DSS} $V_{DS}=4V_S$, $V_{DS}=0V$ 1 μ A Gate-Threshold Voltage $V_{GS(ih)}$ $V_{DS}=V_{GS}$, $I_D=250\mu$ A 2 4 V Drain-Source On-Resistance $R_{DS(ich)}$ $V_{DS}=0V$, $I_D=20A$ 2.6 3.2 $m\Omega$ Diode Characteristics Continuous Body Diode Current I_S 90 A Diode Forward Voltage V_{SD} $V_{GS}=0V$, $I_S=20A$ 1.3 V Reverse Recovery Time I_T $I_S=20A$, $I_S=20A$ 1.3 V Reverse Recovery Charge Q_T $I_S=20A$, $I_S=20A$ 1.3 V Dynamic Characteristics Imput Capacitance C_{ISS} $V_{DS}=30V$, $V_{GS}=0V$, $I_S=10V$	Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Cate-Source Leakage Current I_GSS V_DS=0V, V_GS = ±20V ±100 nA	Static Characteristics						<u> </u>	
Zero Gate Voltage Drain Current I_{DSS} $V_{DS}=48V, V_{QS}=0V$ 1 μ A μ B	Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =250μA	60			V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±100	nA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =48V, V _{GS} =0V			1	μA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2		4	V	
Diode Characteristics Continuous Body Diode Current Is 90 A Diode Forward Voltage V_{SD} $V_{GS}=0V$, $I_S=20A$ 1.3 $V_{SS}=0V$, $I_S=20A$ 1.3 $V_{SS}=0V$, $I_S=20A$ 1.3 $V_{SS}=0V$, $I_S=20A$ 1.3 $V_{SS}=0V$, $I_S=20A$, $I_S=2$	Drain-Source On-Resistance	_	V _{GS} =10V, I _D =20A		2.6	3.2	mΩ	
Continuous Body Diode Current I_S V_{SD} $V_{GS}=0V$, $I_S=20A$ 1.3 V Reverse Recovery Time t_{rr} $I_S=20A$, $di/dt=100A/\mu s$ 101 nC T_{SC}		R _{DS(on)}	V _{GS} =6V, I _D =10A		3.9	5.1	mΩ	
Diode Forward Voltage V_{SD} $V_{GS}=0V$, $I_S=20A$ 1.3 V Reverse Recovery Time t_{rr} $I_S=20A$, $di/dt=100A/\mu s$ 101 nC nC nC nC nC	Diode Characteristics			"				
Reverse Recovery Time t_{rr}	Continuous Body Diode Current	Is				90	А	
Reverse Recovery Charge Q_{rr} $I_S=20A, di/dt=100A/\mu s$ 101 nC Dynamic Characteristics I_{cont} I_{cont	Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A			1.3	V	
Reverse Recovery Charge Q_{rr} 101 nC Dynamic Characteristics Input Capacitance C_{iss} Output Capacitance C_{oss} VDS=30V,VGS=0V,f=1MHz 1619 pF Reverse Transfer Capacitance C_{rss} 90 Total Gate Charge Q_g 80 Gate-Source Charge Q_{gd} VDS=30V,VGS=10V,ID=20A 23 nC Gate-Drain Charge Q_{gd} 19 Turn-On Delay Time $t_{d(on)}$ Turn-On Rise Time t_r Turn-Off Delay Time $t_{d(off)}$ 10 NDS=30V, VGSN=10V, RG=10V, RG=10V, RG=10V, RG=4.5 Ω , RL=1.5 Ω , IDS=20A 51	Reverse Recovery Time	t _{rr}			74		ns	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Recovery Charge	Q _{rr}	1 _S =20A,αi/αt=100A/μs		101		nC	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic Characteristics						ļ	
Reverse Transfer Capacitance C_{rss} 90 Total Gate Charge Q_g 80 Gate-Source Charge Q_{gs} $V_{DS}=30V, V_{GS}=10V, I_D=20A$ 23 nC Gate-Drain Charge Q_{gd} 19 Turn-On Delay Time $t_{d(on)}$ $V_{DS}=30V, V_{GEN}=10V, I_D=20A$ 20 Turn-On Rise Time t_r $V_{DS}=30V, V_{GEN}=10V, I_D=20A$ 36 ns Turn-Off Delay Time $t_{d(off)}$ $V_{DS}=30V, V_{GEN}=10V, I_D=20A$ 51 ns	Input Capacitance	C _{iss}			4692			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	V_{DS} =30V, V_{GS} =0V,f=1MHz		1619		pF	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}			90			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Qg			80			
Turn-On Delay Time $t_{d(on)} \\ Turn-On \ Rise \ Time \\ Turn-Off \ Delay \ Time t_{d(off)} \\ t_{d(off)} \\ t_{DS}=20A \\ 20 \\ 36 \\ I_{DS}=20A \\ 51 \\ 20 \\ 36 \\ 51 \\ 36 \\ 51 \\ 36 \\ 51 \\ 36 \\ 51 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 3$	Gate-Source Charge	Q _{gs}	V _{DS} =30V,V _{GS} =10V,I _D =20A		23		nC	
Turn-On Rise Time t_r $V_{DS}=30V, V_{GEN}=10V,$ $R_G=4.5\Omega, R_L=1.5\Omega,$ $I_{DS}=20A$ ns	Gate-Drain Charge	Q_{gd}			19			
Turn-Off Delay Time $t_{d(off)}$ $R_G=4.5\Omega$, $R_L=1.5\Omega$, $I_{DS}=20A$ $t_{d(off)}$ $R_G=4.5\Omega$, $R_L=1.5\Omega$, $R_L=1$	Turn-On Delay Time	t _{d(on)}			20			
Turn-Off Delay Time $t_{d(off)}$ I_{DS} =20A 51	Turn-On Rise Time	t _r			36		ne	
Turn-Off Fall Time t _f 30	Turn-Off Delay Time	t _{d(off)}	_		51		IIS	
	Turn-Off Fall Time	t _f			30			




Curve Characteristics





Curve Characteristics

Ordering Information

Device	Packing
Part Number-TP	Tape&Reel: 5Kpcs/Reel

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.